
VISUALIZING WITH JFLAP

Background

My interest the issues associated to learning began back in the nineties, before I became aware of
JFLAP. I attended a PKAL session in Williamsburg, VA and I was teaching a Freshman Seminar for
students majoring in computing. I told the students in the seminar that I had two goals:

1. To give them a good opportunity to graduate with their class.
2. Determine whether majoring in computing was for them and, if not, make sure they are

properly guided to a major that would be approriate for them.

I had an interest in the issues of how students learn. At the PKAL meeting, during a small group
discussion, a member of the group mentioned Felder-Silverman Learning Styles, see
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Learning_Styles.html. Simple stated, Felder-
Silverman Learning Styles view that different people learn in different ways and if they understand
how they learn they may be able to adjust heir personal learning process. Felder-Silverman Learning
Styles view learning as a combination of four independent learning axes, see
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/ILSdir/styles.htm:

• Active/Reflective Axis: Active learners tend to retain and understand information best by doing
something active with it--discussing or applying it or explaining it to others. Reflective learners
prefer to think about it quietly first. "Let's try it out and see how it works" is an active learner's
phrase; "Let's think it through first" is the reflective learner's response.

• Sensing/Intuitive Axis: Sensing learners tend to like learning facts, intuitive learners often
prefer discovering possibilities and relationships. Sensors often like solving problems by well-
established methods and dislike complications and surprises; intuitors like innovation and
dislike repetition. Sensors are more likely than intuitors to resent being tested on material that
has not been explicitly covered in class.

• Visual/Verbal Axis: Visual learners remember best what they see--pictures, diagrams, flow
charts, time lines, films, and demonstrations. Verbal learners get more out of words--written and
spoken explanations. Everyone learns more when information is presented both visually and
verbally.

• Sequential/Global Axis: Sequential learners tend to gain understanding in linear steps, with
each step following logically from the previous one. Global learners tend to learn in large
jumps, absorbing material almost randomly without seeing connections, and then suddenly
"getting it."

I have focused on the Visual/Verbal axis, and found that visualization tools, like JFLAP, play a
fundamental role in assisting students in mentally moving along this axis between the visualization of
what they want to accomplish and understanding the corresponding code, or text, that associates to that
visualization.

PRODUCTIONS TO STRINGS

An important use I make of JFLAP is using it to provide students with some insight
into starting with a grammar and its productions and seeing how one might
generate a string in the language. I prefer applying the noninverted tree to the
Brute Parse Table. Unfortunately, the noninverted tree is not currently up and
running in JFLAP8.

http://www4.ncsu.edu/unity/lockers/users/f/felder/public/Learning_Styles.html
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/ILSdir/styles.htm

To illustrate, let's start with a simple grammar, one that
generates binary strings, illustrated to the right. Consider
the parse structure that generates the string 110010.
Generating a brute force parse in JFLAP 7 yields the
structure illustrated. A simple question that should be
posed when students generate brute force parses of a
regular grammars is: Determine a simple way of
expressing the structure generated by a parse of a regular
grammar. I float this question over and over again, but do
not request a definitive answer until we have covered
Contest Free grammars.

When we move to context free grammars the structure of the parse is apparent to
all of us, namely, a tree. For illustrations, consider the parse for a grammar of
arithmetic expressions. The structure of the parse of a context free grammar is so
ubiquitous that, without question we refer to it
as a parse tree. As an example, consider the
parse of the expression, v+v*v, where “v”
represents any primitive variable or value.
When you compare the parse of a string in a
regular grammar, see above, to the parse of a
string in a context free grammar, to the right,
you could say they are both trees, and the
regular string produces a very wimpy tree! Look
again. The parse of strings in regular grammars
form linked lists and all parses of strings in

context free grammars are trees. When you look at the parse of a string in a regular grammar may be
viewed as a linked list with the terminal symbols in the language contained in the head of each head-
tail pair in the list structure. Those are defining characteristics of regular languages and context free
languages.

PARSING CONTEST SENSITIVE AND UNRESTRICTED GRAMMARS

I have one minor gripe when it comes to JFLAP. It
is that JFAP refers to any grammar beyond CFG as
an unrestricted grammar. Technically, that is not
true. In fact (tongue in cheek) if one would present a
truly unrestricted grammar that is not contexts
sensitive they would win $800,000! Recall, that all
we have is an existence theorem about such a
grammar.

The figure to the right comes from a computer
science theory course presentation at RIT by Rob
Duncan. The next step out is context sensitive grammar. Consider the grammar for the language,

L = {xx | x ε {0,1}*}

Let's continue our look at parsing and take a look at the grammar for the language,
L. The productions for one possible grammar for L appear on the left. It is a
contexts sensitive grammar because many of the productions have more than one
entry on the left side of the production. The productions generate a string as
follows:

1. The nonterminal, S, starts the productions, placing a 0 or 1 on the left and
its corresponding right marker, Z (for zero) and O (for one). The
nonterminal T builds the rest of the x with 0s and 1s, placing corresponding
As and Bs in the right half of the string.

2. During the parse of the string there will aways be a Z or O marking the right
side of the string. When a Z or O swaps positions with an A or B, note the
four productions that do this. The Z is replaced by the nonterminal symbol
P and the O is replaced by the nonterminal symbol Q, while the A or B are
replaced by the nonterminals Z or O, respectively. The result is that during
parsing the parse graph will always have a Z or O on the right and nowhere
else.

3. Note that if the nonterminals P. Q, Z, and O are replaced by a 0 or 1 before
items are in their proper places the productions will not terminate in a string
of terminals.

Application of the
productions to
produce a string in

the language is demonstrated below with
the string, 111010111010. Note the
righthand side of the parse graph. Each
blue highlight focuses on the application
of one of the non context free grammar
productions. For example, consider the
blue highlight,

It is highlighting the production whose
left hand side. BO, with the right hand
side, QO, which are the Q and O
appearing immediately below the B and
O.

SUMMARY

Simply stated, the parse graph of a grammar is:
• Regular Grammar – A linked list.
• Context Free Grammar – A tree.
• Context Sensitive Grammar and Unrestricted Grammar – A graph.

Now all we have to do (!) is classify the difference in structure of the parse graphs of contexts sensitive
grammars and unrestricted grammars.

